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ARTICLE

A Defect in Dolichol Phosphate Biosynthesis Causes a New
Inherited Disorder with Death in Early Infancy
Christian Kranz, Christoph Jungeblut, Jonas Denecke, Anne Erlekotte, Christina Sohlbach,
Volker Debus, Hans Gerd Kehl, Erik Harms, Anna Reith, Sonja Reichel, Helfried Gröbe,
Gerhard Hammersen, Ulrich Schwarzer, and Thorsten Marquardt

The following study describes the discovery of a new inherited metabolic disorder, dolichol kinase (DK1) deficiency. DK1
is responsible for the final step of the de novo biosynthesis of dolichol phosphate. Dolichol phosphate is involved in
several glycosylation reactions, such as N-glycosylation, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, and C-
and O-mannosylation. We identified four patients who were homozygous for one of two mutations (c.295TrA[99CysrSer]
or c.1322ArC [441TyrrSer]) in the corresponding hDK1 gene. The residual activity of mutant DK1 was 2%–4% when
compared with control cells. The mutated alleles failed to complement the temperature-sensitive phenotype of DK1-
deficient yeast cells, whereas the wild-type allele restored the normal growth phenotype. Affected patients present with
a very severe clinical phenotype, with death in early infancy. Two of the patients died from dilative cardiomyopathy.
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The transfer of sugar units from polyisoprenyl glycosyl–
carrier lipids to other biomolecules is highly conserved in
prokaryotic and eukaryotic cells.1 In prokaryotes, undeca-
prenyl monophosphate serves as both a carrier and a do-
nor of sugar residues involved in the synthesis of lipopoly-
saccharides, cell-wall peptidoglycans, and capsular poly-
saccharides.2,3 In eukaryotes, dolichol monophosphate is
the most prevalent polyisoprenyl-glycosyl carrier involved
in reactions such as the C-4 and O-mannosylation of pro-
teins, the formation of glycosylphosphatidylinositol (GPI)
anchors,5 and the N-glycosylation of proteins.6

The chain length of eukaryotic dolichol molecules dif-
fers from 14 to 17 isoprene units in unicellular organisms
like the yeasts Saccharomyces cerevisiae and Schizosaccharo-
myces pombe,7 whereas mammalian cells produce dolichol
with 18–21 isoprene units.8 In contrast to bacterial undeca-
prenyl monophosphate, the a-isoprene unit of eukaryotic
dolichol is completely saturated. Only in a few bacterial
glycosylation processes are lipids from the dolichyl type,
rather than from the undecaprenyl type, used.9,10

During the de novo synthesis of dolichol in eukaryotes,
farnesyl pyrophosphate, a metabolite of cholesterol bio-
synthesis, is elongated by its successive condensation to
isopentenyl pyrophosphate molecules. These reactions are
catalyzed by cis-isopentenyltransferases, enzymes that ap-
pear to be closely bound to microsomes in mammalian
tissues.11 After the polyisoprene pyrophosphate chain has
reached its final length, both phosphate residues are re-
leased by mono- or pyrophosphatases. Both mono- and
pyrophosphatase activities could be shown in microsomal
fractions.2,12,13

The a-isoprene unit of the polyprenol is then reduced by

a nicotinamide adenine dinucleotide phosphate (NADPH)–
dependent microsomal reductase.14 The final step in this
biosynthetic pathway is catalyzed by dolichol kinase (DK1),
an enzyme that transfers a phosphate from choline-phos-
phate cytidine triphosphate (CTP) to dolichol.15,16 The
same enzyme might also play a role in the “recycling”
process of dolichol diphosphate (dolichol-PP), which is
released after the transfer of the oligosaccharide structure
to proteins in the endoplasmic reticulum (ER).1 The gene
encoding DK1 was first identified in temperature-sensi-
tive yeast cells deficient for this protein and was termed
“Sec59.” Sec59 mutants stop dividing and become en-
larged at the restrictive temperature of 37�C,17,18 at which
temperature the cells accumulate inactive and incom-
pletely glycosylated secretory proteins.19 The human ho-
mologue of the yeast Sec59 gene was recently cloned and
characterized. The overexpression of the human gene
complements the temperature-sensitive defect of the S.
cerevisiae cells.20

In this work, we describe the first defect in humans that
affects the biosynthesis of dolichol phosphate by the dis-
turbance of the final phosphorylation step. Two homo-
zygous mutations in the human homologue of the yeast
DK1 cause a lethal phenotype, with death in early infancy.
Four patients with this newly discovered disorder are
described.

Material and Methods
Patients

Skin-biopsy samples were taken from the patients after their par-
ents provided informed consent, and fibroblasts were cultivated



434 The American Journal of Human Genetics Volume 80 March 2007 www.ajhg.org

Table 1. Primers for the Amplification of the Human
hDK1 Gene

Primer Name
Primer Sequence

(5′r3′)

Sec59-1f AACGGAGGGAGAAGGTTG
Sec59-1r TAACACCTCCAGCCAAGC
Sec59-2f ATCAGTGTTGGCGCTCGG
Sec59-2r CCGCTTGGCATTCTGGTAC
Sec59-3f TCTTCCAGACAGACACCCG
Sec59-3r AGAAATGATCTGCGCAAATATAG
Sec59-4f CCCTTTTTCTGGATGAACGAG
Sec59-4r CCCAAGTAGCTGTCTGCTGTG
Sec59Res-1f ACAGAAGGGTAGCCTGGGAGGAGCCAGGGCCCTCGTCCGCT

NOTE.—Primer Sec59Res-1f was used for restriction analysis.

in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum, 2 mM L-glutamine, 100 U/ml pen-
icillin, and 100 mg/ml streptomycin sulphate, at 37�C, with 5%
CO2. EDTA blood samples were taken from the parents, to extract
genomic DNA to confirm their heterozygous carrier status.

Yeast

The following yeast strains were used for the experiments: the
control strain was AH22 (MATa, Leu2, His4, and Cir�/�), and the
mutant strain was PRY134 (MATa, Sec59, and ura3-52) (the tem-
perature-sensitive S. cerevisiae Sec59 mutant). Yeast cells were
grown in yeast extract/peptone/dextrose medium containing 1%
yeast extract, 2% peptone, and 1% glucose (pH 6.5). Selection
was done in a yeast nitrogen base medium (Difco Yeast Nitrogen
Base [BD Biosciences]) with 2% glucose. For plates, 2% agar was
added.

Labeling of Human Fibroblasts

Human fibroblasts were labeled for 30 min with 100 mCi [2-3H]-
mannose or [6-3H]-glucosamine per ml labeling medium (DMEM
without glucose:MEM, 9:1), were chased for 10 min in MEM, and
were washed with PBS.

Extraction of Lipid-Linked Oligosaccharides (LLOs)

Cells were extracted three times with chloroform/methanol (2:
1). The pellet was dried under nitrogen and was extracted several
times with water. Dolichylpyrophosphate-linkedoligosaccharides
were predominantly recovered from the subsequent choloroform/
methanol/water (10:10:3) extract and were released by mild acid
hydrolysis, for 20 min at 100�C, in N-propanolol/0.1 N HCl (1:
2). High-performance liquid chromatography (HPLC) was done
in an acetonitril/water gradient by use of a Microsorb MV column
(Varian) with a Waters Alliance system.21

Mutation Analysis

Human hDK1 mRNA was transcribed by reverse transcriptase
(PowerScript Reverse Transcriptase [BD Biosciences]), and the cod-
ing sequence was amplified in four parts by PCR. Primers for
amplification reactions (Sec59-1f–Sec59–Sec59Res-1f) are listed in
table 1. Exact PCR protocols are available on request. All products
were sequenced directly with an automated DNA sequencer (Ap-
plied Biosystems).

To exclude common polymorphisms, 240 alleles of healthy do-
nors of Turkish or white European background were investigated
by restriction analysis. To perform restriction analysis of the
c.1322ArC allele, a forward primer was designed that contained
5 of the 6 base pairs of a BsrBI restriction site at its 3′ end. If the
next base pair added through the Taq polymerase during the PCR
is the mutation, a complete BsrBI restriction site arises. If it is a
wild-type sequence, no restriction site is generated. After the in-
cubation of the PCR products gained from genomic DNA with
BsrBI (New England Biolabs), both alleles could be separated on
2% agarose gels.

The second mutation, c.295TrA, is abrogating a BanI restriction
site. After the amplification of the first part of the Sec59 gene
from genomic DNA through use of the Sec59-1f and Sec59-1r
primers, a BanI (New England Biolabs) restriction of the PCR prod-
uct was performed according to the supplier’s protocols. Both
alleles could be separated on an agarose gel.

In this investigation, the published sequences of human hDK1
at the genomic level (GenBank accession number NC_000009)
and of the coding region (GenBank accession number NM_
014908) were used and confirmed.

Construction of the Expression Vector

The amplicon generated by the PCR with use of the primers
Sec59-1f and Sec59-4r (described above) was cloned into the pCR
2.1-TOPO vector by TOPO TA cloning (Invitrogen). After confir-
mation of the sequence by use of an automated DNA sequencer
(Applied Biosystems), the hDK1 gene was cloned into the ex-
pression vector pYEX-BX (Clontech Laboratories) by using two
EcoRI restriction sites flanking the Sec59 sequence (New England
Biolabs). After amplification in bacteria (TOP10F [Invitrogen]),
the vector constructs were purified, and the sequence of the cod-
ing region was verified again. Transformation of yeast cells was
done using standard procedures.22

DK1 Assay

The DK1 assay was performed as a modification of the procedure
described by Keller et al.23 The reaction mixtures consisted of 100
mM Tris-HCl buffer (pH 7.4), 30 mM CaCl2, 20 mM uridine 5′-
triphosphate (UTP), 6 mM CTP (3,000 Ci/mmol specific activity),
and 5 mg of dolichol, previously suspended in Triton X-100 (final
concentration of 0.1%). The reaction was started by the addition
of up to 700 mg of crude cell-extract proteins, to a final volume
of 100 ml. The background was determined in samples that were
incubated without the addition of dolichol.

The reaction was stopped by the addition of 1,000 ml of chlo-
roform/methanol (2:1 v/v) and was incubated for 30 min at room
temperature. After the addition of 190 ml water and mixing, the
cup was centrifuged. The chloroform phase was then washed with
a chloroform/methanol/water mixture (3:48:47 v/v/v) and was
measured afterward by scintillation counting.

To confirm that the arising compound was dolichol phosphate,
extracts were also applied to thin-layer chromatography (TLC).
The retention-factor (RF) values were compared with a commer-
cially available standard running in parallel.

Results
Clinical Phenotype

Subject GH was born in 1992 to parents of German origin.
His grandparents were first cousins (fig. 1A). At birth, his
weight, length, and head circumference were within the
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Figure 1. A, Pedigree of the family with the c.295TrA mutation,
showing the high degree of consanguinity. Affected patients are
indicated by blackened squares, proven heterozygotes by half-
blackened symbols. B, Clinical presentation of DK1 deficiency. The
6-mo-old girl (ASB) showed profound muscular hypotonia, inflam-
mation and ichthyosis of the skin, nearly complete secondary loss
of hair, and severe DCM.

Figure 2. Transferrin IEF, which shows increased amounts of di-
sialo- and asialotransferrin in the patients. Numbers designate the
number of carbohydrate side chains.

normal range. Secondary microcephaly developed within
the first months of life. The skin was dry, thin, and parch-
mentlike. Electron microscopy of a skin biopsy sample re-
vealed hyperkeratosis. Minimal hair growth was noticed.
Seizures due to hypsarrhythmia started at age 7 wk. Mus-
cular hypotonia and tetraplegia developed rapidly. Pro-
gressive bilateral nystagmus occurred, and reaction to ex-
ternal stimulation became poor. Sonography of the brain
showed no abnormalities, and cardiac ultrasound was nor-
mal. The patient died at age 8.5 mo.

Subject NB, a first cousin of GH (fig. 1A), was carried to
term in 2003. Weight, body length, and head circumfer-
ence were normal at birth but were below the 3rd per-
centile at age 5 mo. Several episodes of hypoketotic hy-
poglycemia with high levels of free fatty acids and normal
insulin levels were recorded in the first months of life,
which necessitated continuous glucose supplementation

via a gastric tube. Results of nuclear magnetic resonance
imaging of the brain at age 1 mo were normal. No seizures
occurred, and electroencephalogram recordings showed
normal patterns. Ichthyosis of the skin was present during
the first weeks of life. Death was caused by a pulmonary
infection, with respiratory syncytial virus leading to mas-
sive cell lysis and cardiac failure at age 6 mo.

Subject ASB was born in 1999 to consanguineous Turk-
ish parents. Ichthyosis congenita with inflammation of
the skin was present (fig. 1B). At age 5 mo, progressive
hair loss was nearly complete, with sparse eyelashes and
eyebrows. Dilative cardiomyopathy (DCM) was present
from birth and persisted throughout life. Severe muscular
hypotonia was present (see a movie at the Dolichol Kinase
Deficiency Web site). Death occurred at home at age 7 mo,
most likely from aspiration.

ASB’s sister, AYB, was born in 2003. Muscular hypotonia
and normal creatine kinase levels were present, and pro-
gressive DCM developed shortly after birth. Dry, ichthyo-
siform skin occurred at the bend of the elbow, the hollow
of the knee, and the scalp. At age 4 mo, while being treated
in the hospital for diarrhea and vomiting, bradycardia
with arterial hypotonia occurred. The girl died after 2 h
of attempts to resuscitate.

Gel Electrophoresis of Serum Proteins

Selective screening for inherited disorders of metabolism
was performed in all patients. Investigations included the
isoelectric focusing (IEF) of serum transferrin, a screening
test for the detection of inherited disorders affecting the
N-glycosylation of proteins. Transferrin IEF is abnormal
in subjects who abuse alcohol and in subjects with certain
inherited metabolic disorders like untreated galactosemia
(MIM 230400) or congenital disorders of glycosylation
(CDG) (MIM 212065).

The transferrin IEF of all study patients revealed a severe
hypoglycosylation, with the majority of the transferrin
missing either two (disialo-) or four (asialotransferrin) ter-
minal sialic acids of the carbohydrate sides chains, a pat-
tern typically seen in patients who have CDG-I but that
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Figure 3. Incorporation of [3H]-glucosamine into LLOs. Fibro-
blasts were labeled for 30 min with 100 mCi [6-3H]glucosamine
per ml labeling medium, and dolichol-linked oligosaccharides were
extracted as described. Incorporation of [3H]-glucosamine was re-
lated to total protein. Controls were set to 100%.

was much more severe in our patients than in most pa-
tients with CDG-I (fig. 2). SDS-PAGE of immunoprecipi-
tated transferrin revealed the presence of two additional
bands. These bands differed from each other in their ap-
parent molecular weights by ∼2 kDa, suggesting the ab-
sence or severe truncation of one or both of the carbo-
hydrate side chains (not shown).

Analysis of Structural Integrity and Quantity of LLOs

N-glycan biosynthesis is a complex multistep process that
begins in the ER. The stepwise addition of sugar molecules
from activated-sugar nucleotide donors leads to a final ol-
igosaccharide of two N-acetylglucosamine (GlcNAc), nine
mannose (Man), and three glucose (Glc) residues residing
on the polyisopren-carrier molecule dolichol. The carbo-
hydrate portion of these LLOs is transferred to the nascent
protein by a protein complex called “oligosaccharyltrans-
ferase.” After transfer to the nascent chain, the oligosac-
charides are further processed during the passage through
the ER and the Golgi apparatus.

The structural integrity of the LLOs was investigated by
labeling the patients’ fibroblasts with [3H]-mannose. After
the extraction of the LLOs by a mixture of chloroform/
methanol/water (10:10:3), extracts were applied to size
fractionation by HPLC. No major structural abnormalities
could be detected in the patients’ fibroblasts (data not
shown).

In addition, LLOs from fibroblasts labeled with glucos-
amine were prepared and separated on a TLC plate, to
analyze the first two steps in the LLO biosynthesis. No
structural differences could be detected in comparison
with control cells (data not shown).

Since no structural LLO abnormalities could be detected
but complete chains appeared to be missing on transferrin,
the amount of LLO was determined in the patients’ fibro-
blasts. Severely reduced amounts of newly synthesized
LLO related to total cellular protein were detected in the
patients’ fibroblasts (fig. 3).

Sequencing the hDK1 Gene

Since no apparent problem could be detected during the
synthesis of the complete LLO structure or the transfer of
the LLOs to protein, the biosynthesis of dolichol phos-
phate was characterized subsequently. We started by an-
alyzing the last enzyme involved in dolichol phosphate
biosynthesis. The mutation analysis of the hDK1 gene of
our patients revealed two mutations. Both were found in
a homozygous state. In patients NB and GH, the mutation
c.295TrA (99CysrSer) was detected, whereas patients ASB
and AYB were homozygous for a c.1322ArC (441TyrrSer)
base-pair exchange. The parents were heterozygous for the
mutations detected in their children. To exclude common
polymorphisms, 240 alleles from members of the same
ethnic groups were analyzed, without the detection of any
variability at the specific positions.

DK1 Assay

The human hDK1 gene product phosphorylates dolichol
in a CTP-dependent manner. The DK1 assay described by
Keller et al.23 was modified to measure the activity of this
enzyme in crude cell extracts of human fibroblasts, as de-
scribed in the “Material and Methods” section.

The crude extracts gained from patient fibroblasts showed
a remarkably lower enzyme activity than extracts from
control cells. In comparison with controls, the decrease
in activity was 94.5%–98.6% for all patients (fig. 4A).

To make sure that the arising compound was dolichol
phosphate, extracts were also applied to thin-layer chro-
matography. The RF values were compared with a com-
mercially available standard running in parallel (fig. 4B).

Complementation of Sec59-Deficient Yeast Strain PRY134

The temperature-sensitive yeast strain PRY134 is deficient
for the Sec59 gene product at the restrictive temperature.
As a result, the cells show a temperature-sensitive pheno-
type. PRY134 cells stop dividing and become enlarged at
the restrictive temperature of 37�C, whereas the growth
at 30�C is comparable to that of wild-type strains. It was
shown recently that the temperature-sensitive growth
phenotype of those yeast cells could be complemented by
the overexpression of the human hDK1 gene.20

To analyze the functional relevance of the mutations
found in our patients, both mutated alleles and the human
wild-type sequence were cloned into a yeast expression
vector and were transformed into PRY134 cells. Mock
transformation was performed, with the expression vector
bearing no insert.

At the permissive temperature (30�C), all cells showed
similar growth characteristics. After the incubation of the
cells at the restrictive temperature (37�C), the mock-trans-
fected cells showed a severely reduced growth.

As shown before, the human wild-type allele of the
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Figure 4. DK1 assay of patient fibroblasts. The reaction mixtures
(A) consisted of 100 mM Tris-HCl buffer (pH 7.4), 30 mM CaCl2,
20 mM UTP, 6 mM CTP (3,000 Ci/mmol–specific activity), and 5 mg
of dolichol, previously suspended in Triton X-100 (0.1% final con-
centration). The reaction was started by the addition of up to 700
mg of crude cell extracts, to a final volume of 100 ml, and was
stopped after 20 min by the addition of 800 ml of chloroform/
methanol (2:1 v/v). After dolichol phosphate (Dol-P) was ex-
tracted, the samples were dried under nitrogen and were measured
in a scintillation counter. The activity of the patients’ crude ex-
tracts were severely reduced (residual activity [�SD]: NB 3.2% �

; ASB 4%; AYB ) compared with control cell lines.1.8% 3.9% � 1.6%
B, Assay samples, separated by TLC. Pig Dol-P was used as standard.

hDK1 gene was able to complement the temperature-sen-
sitive growth phenotype. Both mutated alleles (c.295TrA
[99CysrSer] and c.1322ArC [441TyrrSer]) showed only
a slight complementation in yeast, demonstrating the
functional relevance of both mutations (fig. 5).

Discussion

We describe the first known human disorder affecting
the synthesis of dolichol phosphate. Four patients from
two unrelated families with a defect in the hDK1 gene
presented with a severe phenotype, with death in early
infancy.

All patients showed a remarkable loss of oligosaccharide
structures on serum transferrin, as shown by IEF and im-
munoprecipitation of the protein, implicating a disorder
affecting N-glycosylation. The analysis of LLOs showed no
structural abnormalities of the N-glycans assembled on
dolichol but did show a severely reduced amount of to-
tal LLOs. Therefore, the biosynthetic pathway of dolichol
phosphate was analyzed.

At least eight dolichol phosphate molecules are required
for the assembly of one N-glycan, one as the carrier of the
N-glycan and seven more for the import of mannose and
glucose into the lumen of the ER.24 It is well established
that the availability of dolichol phosphate is one of the
rate-limiting factors in controlling the synthesis of LLOs
in eukarytic organisms.25,26 Dolichol phosphate is the sub-
strate for several enzymes in the glycosylation pathway.
GlcNAc-1-P transferase—which transfers the first GlcNAc
residue to dolichol phosphate—as well as mannose-P-dol-
ichol synthase and glucose-P-dolichol synthase is depen-
dent on a sufficient supply of free dolichol phosphate.27

The arising metabolites like mannose-P-dolichol are
themselves substrates for a number of downstream gly-
cosylation reactions, such as N-glycosylation, GPI-anchor
biosynthesis, and C- and O-mannosylation. Therefore, it
is not surprising that a defect of DK1 in humans has severe
effects on the affected individuals.

The final step during the de novo synthesis of dolichol
phosphate is the phosphorylation of dolichol by DK1. Se-
quencing of the corresponding gene revealed homozygos-
ity for either one of the two detected mutations (c.295TrA
[99CysrSer] or c.1322ArC [441TyrrSer]) in the affected
individuals.

Subsequently, the dolichol-kinase activity measured in
crude fibroblast extracts from patient fibroblasts showed
a decrease in activity to 2%–5%, in comparison with ex-
tracts from control cells. None of the patients’ DK1 al-
leles was able to complement the temperature-dependent
growth phenotype of DK1-deficient yeast cells, whereas
the wild-type human gene completely restored the yeast
growth at 37�C. Both the enzyme and the complemen-
tation assay demonstrate the functional relevance of both
mutations.

Although eight dolichol phosphate molecules are needed
for the synthesis of one N-glycan, no truncated LLO struc-
tures were detected. It has been suggested that two pools
of dolichol phosphate exist in the membrane of the ER of
eukaryotic cells: one limited pool of dolichol phosphate
that is directly involved in glycosylation and a second pool
that does not seem to participate in processes mentioned
previously.28,29 It has been speculated that a limited pool
of dolichol phosphate exists in “rafts” within the mem-
brane. In this model, dolichol is bound by the so-called
potential dolichol-recognition sequences that can be
found in various glycosyltransferases. The limited pool of
dolichol phosphate seems to be replenished by recycling
reactions. Dolichol phosphate used in the LLO pool is
released after the transfer of the carbohydrate portion to
protein as dolichol-PP. Dolichol phosphate is regenerated
by the pyrophosphatase CWH8/Dolpp1.30 In addition, all
glycosylation reactions involving dolichol-P-mannose or
dolichol-P-glucose release dolichol phosphate. It may well
be that the residual activity of DK1 in fibroblasts is suf-
ficient to fill this highly recycled and limited pool of dol-
ichol phosphate initially and therefore guarantees a nor-
mal LLO pattern. Another reason for the structural integ-
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Figure 5. Growth characteristics of transformed Sec59 yeast cells, showing 10-fold dilutions from top to bottom. Pictures were taken
after 1 wk at the permissive temperature (30�C) (left) or at the restrictive temperature (37�C) (right). From left to right in both panels:
cells transformed with human wild-type allele (wt), cells transformed with the c.1322ArC allele (for subjects ASB and AYB), cells
transformed with the c.295TrA allele (for subjects NB and GH), and mock-transformed cells.

rity of the LLO might be differences in the Km values of
the involved enzymes. If the GlcNAc-1-phosphotransfer-
ase reaction—the first enzymatic reaction with use of dol-
ichol phosphate as a substrate—is the rate-limiting step
for the completion of the LLO or if the enzyme would
have a considerably higher Km for dolichol phosphate
than the dolichol-P-mannose and dolichol-P-glucose syn-
thases, no structural deficiencies would be detectable.

Severe defects of N-glycosylation (e.g., CDG) are not
compatible with life,31 and the mechanism by which dif-
ferent molecular defects result in the very heterogeneous
pattern of biochemical and clinical problems is poorly un-
derstood.24 In the patients with DK1 deficiency, another
pathogenetic mechanism might be of interest. The theory
of two widely independent dolichol phosphate pools sug-
gests the possibility that some problems are not due to
glycosylation defects but are directly caused by a reduction
of the secondary dolichol phosphate pool. It has been
shown that dolichol phosphate has a remarkable influence
on membrane fluidity and structure, and it has been spec-
ulated that dolichol phosphate might influence the for-
mation of nonbilayer structures and that it therefore fa-
cilitates membrane-fusion processes.32,33

DK1 deficiency is characterized by a very severe clinical
phenotype. All affected children in our study died within
the 1st year of life. DCM was the life-limiting factor in
two of the DK1-deficient patients. DCM is a rare symptom
of metabolic diseases in infancy, with a cumulative inci-
dence of 4–5 in 100,000 children of this age group.34

Autosomal dominant familial DCM has been found to
be caused by mutations in the genes for beta-myosin
heavy chain (MIM *160760), cardiac troponin T (MIM
*191045), or a-tropomyosin (MIM *191010). In these dis-
orders, DCM has a variable time frame of manifestation,
but infants have been detected with a cardiac disease on
family investigations.35 Of inherited forms of DCM, 90%
are reported to follow an autosomal dominant inheri-
tance, and 5%–10% are X linked.35 Autosomal recessive
inheritance, as reported here, has hardly been recognized
as a cause of DCM so far. Further insights into the pa-
thology of DCM might be gained by investigating the roles
of dolichol phosphate and glycosylation in the onset of
DK1 deficiency.

DK1 deficiency is the first member of a newly discovered
group of metabolic disorders caused by defects in dolichol
phosphate biosynthesis. Although some aspects of the
clinical phenotype of these patients might be caused by
something other than glycosylation-related deficiencies,
most known affected pathways are involved in glycosy-
lation processes of different kinds. The patients are of con-
sanguineous origin, so the possibility of multiple recessive
conditions coexisting in one or more of the patients can-
not be completely excluded and could account for some
of the clinical disparities observed. Since this metabolic
disorder has been detected by the IEF of serum transferrin,
the disorder could be included in the group of CDG with
the name “CDG-Im” until a more satisfying nomenclature
is available. When the complexity of the dolichol phos-
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phate biosynthesis pathway is considered, the discovery
in the near future of other disorders in the same pathway
can be expected.
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